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Abstract. We investigatethe relation betweenthe Maslov class of a Lagrangian
(Legendrian)submanifold,anditsmeancurvaturevector.

The Maslov classis a cohomologicalinvariantof a pairof Lagrangiansubbundles

of a symplectic vector bundle, and its main applicationsare for Lagrangian

submanifoldsof a phasespacewhich is the cotangentbundle T*M of a manifold
M. (Everythingis C~in this paper). In this Note we considerthe caseof a Rie-

mannian phasespace (T*M, g), where g is a Riemannianmetric of M, and we
completeour computationsof [11] suchas to obtain a fully Riemannianexpres-

sion of a differential form which representsthe Maslov class.The result genera-
lizes a formulagiven by J.M. Morvan [9] for the caseM = IR’1. We shallalso pre-
sent a computation for the Maslov classof an optical Lagrangian submanifold
[1] of T*M. Furthermore,by a similar method,we give a Riemannianrepresenta-

tive form of the Maslov classof a Legendriansubmanifold of the unit sphere
subbundle of T*M. Finally, similar formulas are used to compute the mean

curvature vector of a Lagrangian(Legendrian)submanifold of an almost Her-
mitian (almost contact metric) manifold. In the (almost) Hermitian casethis
yields an interpretation of a 1-form defined by A.T. Fomenkoand Le Hong
Van [7, 8].

Key Words: Maslov class, Riemannianphasespace,Lagrangian sosubmanifold,Legendresub-
manifold,Meancurvature.
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1. LAGRANGIAN SUBMANIFOLDS OF COTANGENT BUNDLES

Let L —~ J be a symplectic vector bundle of rank 2n, and L
01 be Lagran-

gian subbundlesof E. Then,after a preliminary reductionof thestructuregroup

of E to ((n), L0 yield further reductionsto O(n I, and we may considercor-

respondingorthogonalconnections&~,~ . The Maslovclass~ L0. L1 ) E j~jl~

is thecohomology classof the I -form ( \[~T/1r)(O~ -- ~ where thecompo-

nentsof the connectionsare with respectto unitary frames,and we agreeto use

the Einsteinsum convention[5, 111

Particularly, a phase space T*M has the symplectic form ~2 = dX. where X

is the Liouville 1-form, and the vertical foliation ~ by the fibers is Lagrangian.

Then if L is a Lagrangiansubmanifold of T*M, ~u(TT*M, ~/L, TL) is denoted

by ja1 and called the Maslov classof L. It is the sameas theclassoriginally defi-

ned by Maslov in quantum physics. (In order to achieve this we addeda factor

— 2 to theclassconsideredin [11] )~

In [11 J a representativeform of p1 is given as follows. Put

(1.1) TT*M= [op.

where ~ is the horizontal distribution of the Riemannianconnection D of g.

Notice that ~ (TM). and ~ - ~ (T~M)whereir: T*jIl -* M is thepro-

jection, and the secondisomorphism is a-duality. This allows to lift g to a Rie-

mannian metric ‘y = lr*g >D 7y*g* of T*M, and to define the ‘y-metric connection

V = ~ ‘(D) ~ ir~ (D*) ~g* D~areg, D on T*M). On the other hand.J/~ =

(&2-duality) o (‘y-duality), J
2 = Id yields an almost complex structure on

T*M which is both g and~l-compatible andsatisfiesVJ = 0. HenceV is a unitary

connection, and it turns out that the Cherri-Simonstransgressionform T(V)c
1

restricted to unitary basestangent to L (e.g.. [11]) <<lives>> on L and it defines

exactly (l/
2)p

1.
We send the reader to [11] for more detailsand local coordinateexpressions

of this construction. Particularly, if (e1, Je.) are unitary basesalong L such that

e. E TL (i = 1 n). and thereforeJe. arey-normal to L, V haslocal equa-

tions of the form

(1.2) Ve. = X)e. + ~.(Je). V(Je.)= — g.e.+ X~(Je.),

where (?~).(b~)are matricesof 1-forms which are antisymmetricandsymmetric

respectively. If = (e~ ~Je~)/ ~. (1.2) givesV[ = (X~ + ~
hence T(V) ~1 = — (I / 2ir)b~,and we get the following representative1-form of
ML Ill]

(1.3) in
1 = (l/ir)b~

To go on we need the RiemannianconnectionV of ~yon T*M, and we look
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for it underthe form

(1.4) V~Y=V~Y+S(X,Y).

If we write down the conditions that V is y-metric and torsionless, and use

the classical cyclic permutation trick of Riemanmangeometry we see that S
is determinedby the formula

(1.5) 21(S(X, Y),Z)= T(X, Y, Z)—T(Y, Z, X)—T(Z,X,Y),

where I~(X,Y, Z) = 7(X, T(Y,Z)), and T(Y, Z)is the torsionof V.

Remark.Formula (1.5) holdsfor any Riemannianmanifold.

The torsion T was computedin [11] and an easy comparisonshows that

(1.6) T(X, Y, Z) = r(Z, Y, JX),

wherer is a 3-covarianttensordefinedon T*M by

(1.7) r(X, Y, Z) = — A (horizontallift of R(ir~X, ir*Y) (ir*Z)),

andR is the Riemanniancurvaturetensorof (M, g).

THEOREM 1.1. TheMaslov class is thecohomologyclass of theform

n
(1.8) mL(X)= (i(HL)f2)(X)—

‘IT

— — (r (X, e., e.) — r (JX, e., Je1)),

whereHL is themeancurvature vector of L in (T*M, y), X is tangent to L and

(e1) is an arbitrary ‘y orthonormalbasisofTL.

Proof SinceJe1 is a normal basisof L a known formula of Riemanniangeome-

try yields

(1.9) nHL “~i,/=l y(V~.e.,Je.)Je.,

and if we use(1.2), (1.4), andb~= b~(1.9)becomes

(1.10) nHL = ~= (~(~e.,Je.) + ‘y(S(e., e.),Je.))Je..

Here, we shall replaceV5. e1 = 7~.e~+ [e~~e1] + T(e~.e1), anduse (1 .5) and
(I .6~.We ~et
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nHL = ~Lj= I b~(e
1)Je1— I (r(e., e., e.) -- r(Je., e1,Je))Je1.

Now, since (e1, Jet) is a syn’iplectic basis, it is easyto checkthat this lastresult

is equivalent to (1.8). Q.e.d.

If M = IR’~,r = 0. and (1.8) reducesto Morvan’s formula [9] Thesameholds

if (M, g) is locally flat [11].
If (M, g) is of an arbitrary constantsectional curvature k, then R(u, v)w =

= k{g(v, w)u -- g(u, w)v} (u, v. w E TM),and (1 .8) becomes

ii k
(1.11) rn1 (X) = — (i(HL )~)(X) + — (g(ir,~,e~.7r~e.)X(X)--

‘IT iT

— g(ir~e.,ir~Je1)X(JX) — g(rr~X,n’~e.)X(e.)+

+ g(ir4,JX, ir~,Je1) X(e1)).

Then, if we decomposeinto horizontaland verticalcomponents

(1.12) X=hX+VX.e.=hle.+ue.

anduseJ(l~)= ~, we obtain:

(1.13) m1~=— ((i(HL)~)(X)_

— ([7(hx e1) — y (V~ es)] X(e.) +

+ y(he., he)X (X) + ~(he Ue.)X(JX)).

For instance,if L is the conormalbundle v~Nof a totally geodesicsubmanifold
N of (M, g), it follows from our computationsin [12] that, on onehandrnL = 0

and, on the other hand, TL has baseswhich consist of p = dim N horizontal
vectors and of n p vertical vectors. This implies ~C”e1. ye) = 0 and, since

A = 0 alonga conormalbundle,formula (1.13) yields

PROPOSITION 1 .2. The conormal bundle v*N of a totally geodesicsubmanifold

N ofanyspaceform M is a minimalLagrangiansubmanifoldof(T*M, y) U

(IfMis flat it sufficesto askonly minimality ofNin M [12]).

A Lagrangiansubmanifold L of T*M is called optical [1] if it is a submani-

fold of a hypersurfaceW transversalto the fibers, and which intersectsthe latter
along convex hypersurfaces.Here, we shall assumethe strongerthan transver-

sality condition that TW doesnot contain the Euler vector field E defined by
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i(E) ~2= A. In this casewe call W a regular hypersurface,and if is the inclu-

sion of W in T*M ‘I~ = ~A is a contactform on W Indeed,it is easyto check

usinga basisof TWthat

~A(drj)’~’ =(l/n)~*[i(E)(dAY},�r0.

Let CE TWbe definedby

(1.14) i(C)(di7)=0, ‘f(C,C)=1.

Then i~(C) ~ 0, andwe may orient Csuchas~(C)>0. Moreover(1.14)implies
thatV Z E TWwe have‘y(JC, Z) = ~(C, Z) = (i(C)d~) (Z) = 0 i.e., JC is a unit

normal vector field of W, henceit is nota horizontalvector,andC is not vertical.

Accordingly, if C’ is the orthogonal projection of JC onto ~“ then n =

= 1c’ j~,is the unit normal vector of W~= W fl in (~, ‘y)(x EM).

Since it also follows from [11] that V is the Riemannianconnectionof ( ~,

the secondfundamentalform of W, in ~ is

a(X, Y)=y(V~Y, n)= v&~(C, VXY) (X, YETWX).

Here, we can expressV by (1.4),and the presenceof S will result in the presen-

ce of termsin r which vanishbecauseX, YE ~“. The result is

(1.15) a(X, Y) = p&2(C, VXY) = v’y(JC, VY) = va(X, Y),

where in the secondfundamentalform of W in (T*M, ~y).Hence, we have

PROPOSITION 1.3. The hypersurface W is convexalong the fibers of T*M iff
~‘ fl TW is contained in the positive subspace of the second fundamental form

ofWin(T*M,7).

Along the hypersurfaceW it is also important to considerthe distribution

go which is orthogonalto C, and,thereforeit is ~2-orthogonalto the symplectic

plane (C, JC). It follows that (~,~‘Z/~) is a symplecticvector bundle on W.
Now, let L C W be a Lagrangiansubmanifoldof T*M. The maximal ~2-iso-

tropy of L implies that C E TL, and that 2 = TL fl l~1’is a Lagrangiansubbundle
of (~,f~/~). Hence, in the computationof the Maslov classof L we may use
local unitary bases(e, C, Je, JC), wherea = 1, . . . , n — 1, and e E 2. With

respectto thesebasesequations(1.2) becomeof the form

~/e =p~’Ie +c~ C+c”I(Je )+r (JC) V(Je )=JVe
(1.16) - a a a a (3 a a a -

Vc= —E~i~Kaea + ~II~ r(Je )+O(JC), ~(K’) =iVc,

wherep~= — andc~= c~. (Notice that VC IC since‘y(C, C) = 1).
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Henceby (1.3) the Maslov classof L is representedby

1 1
(1.17) in =—— c’~ — — 0.

L
iT ‘IT

Now, we shall notice that since C is not vertical the orthogonal projection

of T14! fl ~ onto ~ is a Lagrangiansubbundle of 1 ~?.~2/~ ) such that a

Maslov classp(.~.2~,2) exists in H’ (L, il’.). From (1.16) we seethat Vf =

= p~f~and Vf = (p~+ ~ c~)f~,where f = (e —~ Je)/ V~,are

£~and~ — orthogonal connections,respectively.This shows that p(3~.-~°~>,

~) is representedprecisely by the 1-form mC~0.~) = — (l/~) c’~. Finally,

the form 0 of (1 .17). which by (1 .16) is 0(X) = C JC) (X E TL). can be

computedwith (1.4). (1.5). (1.6) and(1.15).The result is

PROPOSITION 1 .4. I-or a Lagrangian submanifoldL containedin a regular hi’per-

surface Wof T*M, the Maslov class p1 is representedby the1-form

i1lL(X)fll(2o.~)(A) — ah(C, X —

IT

— — (r(C, JG, JX~+ r(X, C, C) + r(X, JC JC’)),
2~r

it’here notation was describedpreviously.

2. LEGENDRIAN SUBMANIFOLDS OF COTANGENT SPHERE BUNDLES

For the same manifold 114 as in Section 1, the cotangent sphere bundle is

(2.1) S*M={pET*M/g*(p,p)= U.

and it is a regularhypersurfacein the senseof Section 1. Indeed,since the Rie-

mannian connection is length preserving its horizontal space.~1along S*M is

tangent to S*M, and the latter must be transversalto the vertical distribution

-. Accordingly the normal vector of S*M is in ~, and it is normal to

S*M fl ~ . Using natural local coordinates we see that this normal vector is

exactly the Eulervector E, which provesourassertion.
Furthermore,it follows that C of Section 1 will be JE. and it is related to

thecontact form i~ inducedby A in S*M by the relation

(2.2) ~y(JE,X) = f2(E, X) = A(X) =

therefore the distribution ~ of Section 1 is precisely the contact distnhution
= 0. Accordingly, by definition, a Legendriansubmanifoldof S*M (or T*M)
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is an (n — 1)-dimensionalsubmanifoldA suchthat TA are Lagrangian subspaces

of this contact distribution. The Lagrangian distribution encounteredin
the end of Section 1 is now exactly TS*M ~ ~, and the Maslov class of A is

defined as ~A =p(go, 2~,TA).

As mt the end of Section 1 (see also more details in [11]), we shall obtain

a representative1-form of from the connectionVi, by putting its local equa-
tionsunderthe form (1.16),where e ETA, and C is to bereplacedby JE (this

also implies 0 = — ‘y(V(JE), E) = ~(E, yE) = 0 becauseV preservesthevertical
spacewhich is Lagrangian).Hencethe representativeform of ~ [11]

(2.3) mA =—— c~.
‘IT

Like in the Lagrangiancase,in order to transform (2.3) into a Riemannian

expressionwe shall computethe mean curvaturevectorHA of A in S*M. With
the notation of formulas (1.16) the normal spaceof A in S*M has the basis
(Je, JE). Hencewe shallhave

(2.4) (n — l)HA ~a,j31 ‘y(V~ e,Je,~)(Je13)+

+ ~ Y(V~aea,JE)(JE),

where Vi’ is the Riemannian connection of (S*M, ~y).Furthermore,from (1.16)

and (1.4) we get

(2.5) Vi’ e = V e + r E + S(e , e ) — ‘y(S(e , e ), E)E
a a a a a a a a a

and, therefore

(2.6) (n — l)HA = E~1 c’~(e)(Je13) +

~ y(S(e,e),Je~)(Je13)+~2’~~K(e)(JE)+

+ ~ y(S(e, e),JE)(JE).

In this formula the terms containing S will be calculatedby (1.5) and (1.6),

and on the otherhandwe shall use

c’
3(e)=c~(e) = ‘y(V

5~,,Je) =

=‘y(V5 e + [e, e13] + T(e, e13),Je ) =

=c (eu) +‘y(T(e, e13),Je).

The final result is

(2.7) (n — l)HA = ~ c(e13)(Je~)— ~aa3=I r(e13, e, ea) (Je13)+

+E~j Ka a)L~+ 7I’I r(Je13,e,Je)(Je13)+
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+ ~ r(JE, e, Je) (JE).

Now, since (e, JE, JCa~— E) is a symplecticbasis&~has the canonical form

with respectto this basis,andwe getfrom (2.3) and(2.7).

THEOREM 2.1. The Maslov class of a Legendrian submanifold A of a cotangent

spherebundleS*M is representedby the 1-form

ii --- 1
(2.8) mA(X) ~r

— — - r(X, e , e ) -- r(JX, e , Je ).
d ~

iT

where X E TA. i~ is the contact form of S*M, and HA is the meancurvature

vector ofAin (S*M 7).

The representative1-form of the Maslov classof A given by (2.8) hasobviously

a Riemanniancharacterin (S*M, ‘y).

3. GENERALIZATION OF THE MEAN CURVATURE VECTOR FORMULAS

In this section we extend formulas (1.8) and (2.8) such as to computethe

mean curvature vector of a Lagrangian submanifold of an almost Herinitian

manifold and of a Legendriansubinanifold of an almost contact metric mani-

fold M. Of course,in this casesLagrangian(Legendrian)meansthat the tangent

bundle of the submanifold is a Lagrangian(Legendrian)subbundlewith respect

to the structure defined by the fundamental2-form of the almost Hermitian

(contact) structure. In the almost Hermitian casewe reobtain a formula of Fo-

menko-Le Hong Van [7] and Le Hong Van [81. and we havea geometric in-

terpretationof the I-form definedby thoseauthors.

Let (N2”, g, J) be an almost Hermitian manifold, and ~(X, Y) = g(JX, Y)

be its fundamental(Kähler) 2-form, Let L be a Lagrangnin submanifoldon N.

In view of the explanationsgiven in Section 1, it is natural to define theMaslov

form of L as

(3.1) = 2T(V/L c
1

where c1 is the first Cheni polynomial in diemnsionn, V is the Hermitian con-

nection of A> (e.g., [6], Section IX.10). and T denotesthe Chern-Simonstrans-
gression.In (3.1) the notation V IL meansthat V is restricted to the bundle of

unitary frames Ic, Je.) (i = 1 n) of TN where e~E TL. This ensuresthat
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mL lives on L, but it may not be closedsince, by [4], dmL = c1 (CurvatureVi)
and V is a unitary but, perhaps,not an orthogonal connectionon the bundle
mentionedabove. (Notice also that V of Section 1 is not the Hermitian con-
nection of (T*M, J, ‘y), but we haveno analogueof that V for a generalalmost

Hermitianmanifold).
- Now, if we see (1 .2) as being the local equationsof the Hermitianconnection

V/L, where e, are tangentto the submanifoldL, (1.3) becomesthe expression

of the presentlydefined Maslov form (3.1) of L. Furthermore,we may use
the formulas (1.4) and (1.5) in order to compute the Riemannianconnection
V of g, and thencomputelike in the proof of Theorem 1.1. This will yield the

formula:

(3.2) nHL = ~i,j=I b’(e1) (Je.) +

+ ~, T( Je.,e., e) + T(e., e., Je1)} (Je1),

and, therefore, for every X E TL, we shallhave

PROPOSITION 3.1. The mean curvature vector HL of a Lagrangiansubmanifold

L ofan almostHermitian manifold(N, J, g) is determinedby the formula

(3.3) n(i(HL) ~‘L)(X)=ITmL(X)+

+ ~ , {~(e., Je., X) + ?(Je., ~ X)},

(Notice that we made use of the following property of the Hermitian con-

nection:T(Y,JZ) = T(JY,Z)) ([6], PropositionIX.10.2)). U

Expressingthe Nijenhuls tensor of J by the torsion of V ([6], Proposition

IX.3 .6) we seethatJ is integrableiff

(3.4) T(JX,JY) — J(T(JX, Y)) — J(T(X,JY))— T(X, Y) = 0,

andfor the Hermitianconnectionthis conditionactuallymeans

(3.5) T(JX,JY) = JT(X,JY) or T(Z, JX, JY) = — T(JZ, X, JY).

Accordingly, in theHermitiancase(3.3) becomesjust nicely

(3.6) ni(HL)E~=irmL.

This is precisely the result of [7], with the supplementaryinformationabout

the geometricnatureof their ad hoc defined 1-form. Formula(3.3)is equivalent
with theresult obtainedin a different mannerin [8].

Similar formulas can be developedfor Legendriansubmanifoldsof almost

contactmetric (a.c.m.)manifolds. Let (N
2” + ~, ~, ~, ~, g) be an almostcontact
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metric manifold, where ~ is the (1 , 1)-tensor,E is the vectorfield. i~is the 1-form,

and g is the metric of thea.c.m.structure (e.g.. [21). Then it has a fundamental

2-form ~(X, Y) = g(pX, Y) which is nondegenerateon the vector bundle imp,

and, hence,it makesthe latter into a symplecticvector bundle~ . If thereexists

a submanifoldA of N such that TA is a Lagrangiansubbundleof ~ then A will

be called a Legendriansubmanifoldof N

An a.c.m. manifold has an important connection Vi’ which may be defined
as follows. Consider the well known almost Hermitian structure on N x IR defined

by the tensors

d d
(3.7) J X~a — = (~X-aE)-Li~(X)—

di di

d d
~‘ Xea — , Yab — =g(X, Y)+ab.

dt dt

Then,define V to be the Hermitian connectionof Ax JR. and V’to be induced

by V in N x (0) = A~Then V(V’) inducesa unitary connectionV in (‘~. ~. g).

and we shall define the Maslov form of the Legendriansubmanifold A on N by

meansof the transgressionform

(3.8) m\ = 2T(V/.~)c1.

In order to compute this form, we shall representthe Hermitian connection

of A x JR by equations of the form (1.16). where C is to be replaced by ~ and

JC by d/dt, and where e E TA. If we also replacethe Greekindices by Latin

indicessincethey haveto run from 1 ton, we get like for (2.3)

(3.9) in~ = — — c~.
‘IT

Furthermore, we may compute again like for the proof of the formulas(2.7).

(2.8). andtherebyobtain for themeancurvaturevectorH\ the result

(3.10) nH~= c~(e.) (Je.) + ~ ~(e.)~ +

+ ~ [~(Je, e., e1) + T(e~. e~, J~)1(Je1) + ~ T(e., c..

Now, if X is a tangentvector field of A, we get

PROPOSITION 3.2. The meancurvature vector HA of a Legendriansubinanifold

A of the a.c.m. manifold N is determined by the formulas

(3.11) n(i (HA)~)(X) = ~ (X) — ~ (T(~e.,e., X) + T(e., ~e., X)),
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(3.12) ni~(HA)=~.”, K.(e~)+~’1T(e.,e.,~)=

=_~‘=, g(e.,[e.,fl),

The last equality follows using the formulas (1.16) of the presentcase,Let

us also rememberthat if J of (3.7) is integrablethe a.c.m. structureis said to be
normal, and then,justlike for (3.6), we get

(3.13) n(i(HA)
1) = ITmA.

Let us recall againthe basicformula [4]

(3.14) d(T(V)c, ) = c~

where l~is the curvature of V and T(V)c
1 is a form on the total spaceof the

correspondingbundle of unitary frames. In view of the formulas established

earlier in this Section (3.14) indicatesa relation betweenthe minimality pro-
pertyof Lagrangian(Legendrian)submanifoldsand the first Chern class,Namely

we have

PROPOSITION 3.3. Let L be a minimal Lagrangian submanifoldof a Hermitian
manifoldM. Then the first Chern class c1(M) vanisheson L. Similarly, if A is
a minimal Legendriansubmanifoldof a normal almostcontact manifold, then

c,C6)vanishesonA.

Proof The first part of this Proposition was establisheddirectly in [3] and

[8]. It follows from (3.6), and the transgressioninterpretationof m~by restric-
ting (3.14) to L. The secondpart follows in the sameway from (3.13) U

REMARK. The results of Proposition 3.3 remain valid for the almostHermitian

and contact case if T vanishesalong the submanifoldsL and A respectively.

Relationsbetween the first Chern class and stability of minimal Lagrangian

submanifoldwere establishedstraightforwardlyin [8] and [10] by a studyof the
secondvariationof the volume,For instance,if the first Chemclassof a Hermi-
tian manifold is negative its minimal Lagrangiansubmanifoldsare stable [8].



394 IZU VAISMAN

REFERENCES
[11 VI. ARNOLD, First steps in symplectic topology, Russian Math. Surveys41:6 (1986).

1.21.

[2] D. BLAIR, Contactmanifolds in Riemanniangeometry.Lecture Notes in Math., 509,
Springer.Berlin - New York, 1976.

[3] R. BRYANT, MinimalLagrangiansubmanifoldsof Ktihler- Einsteinmanifolds,Differen-

tial Geometry and Differential Equations,ProceedingsShanghai1985 (Gu Chaohao,
M. Berger,R.L. Bryant eds.),Lecture Notes in Math. 1255,Springer,Berlin -New York.
1987, 1-12.

[41S.S. CHERN, J. SIMONS, Characteristic forms and geometric invariants, ‘inn. Mail,
99 (1974), 48-69.

[5] F.W. KAMBER, Ph. TONDEUR, Foliated bundles and characteristic classes,Lecture
Notesin Math.,Springer,Berlin NewYork, 1975.

[6] S. KOBAYASHI. K. NOMIZU, Foundationsof differential geometry,I. II, Intersci.Pubi..
NewYork, 1963, 1969.

[7] LE HONG VAN, AT. FOMENKO, Lagrangian manifolds and the Maslov index in the
theory of minimalsurfaces,Soviet Math. DokI., 37 (1988),330-333.

[8] LE HONG VAN, Minimal ~-Lagrangian surfacesin almost Hermitian manifolds, Mat.
Sbornik, 180 (1989), 924-936.

[9] J,M, MORVAN, Quelquesinvariantstopologiquesen géométriesymplectique.Ann. Inst.
H. Poincarë,A, 38 (1983). 349-370.

[10] Y.G. OH, Secondvariation and stabilitiesof minimal Lagrangiansubmanifoldsin Kthler
manifolds.InventionesMath. 101 (l99C),501.519.

[11] I. VAISMAN, S,ymplecticgeometryand secondary characteristic classes, Progressin Math.
72, Birkhauser,Boston,1987.

[12] I. VAISMAN, Conormal bundles with vanishing Maslov form, Monatsheftefür Math. 109
(1990),305-310.

Manuscriptreceived:February22, 1990


