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The Maslov class
in a Riemannian phase space
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Abstract. We investigate the relation between the Maslov class of a Lagrangian
(Legendrian) submanifold, and its mean curvature vector.

The Maslov classis a cohomological invariant of a pair of Lagrangian subbundles
of a symplectic vector bundle, and its main applications are for Lagrangian
submanifolds of a phase space which is the cotangent bundle 7*M of a manifold
M. (Everything is C* in this paper). In this Note we consider the case of a Rie-
mannian phase space (T*M, g), where g is a Riemannian metric of M, and we
complete our computations of [11] such as to obtain a fully Riemannian expres-
sion of a differential form which represents the Maslov class. The result genera-
lizes a formula given by J.M. Morvan [9] for the case M = IR" . We shall also pre-
sent a computation for the Maslov class of an optical Lagrangian submanifold
[1] of T*M. Furthermore, by a similar method, we give a Riemannian representa-
tive form of the Maslov class of a Legendrian submanifold of the unit sphere
subbundle of 7*M. Finally, similar formulas are used to compute the mean
curvature vector of a Lagrangian (Legendrian) submanifold of an almost Her-
mitian (almost contact metric) manifold. In the (almost) Hermitian case this
yields an interpretation of a l-form defined by A.T. Fomenko and Le Hong
Van [7, 8].
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I. LAGRANGIAN SUBMANIFOLDS OF COTANGENT BUNDLES

Let £ — I" be a symplectic vector bundle of rank 2#, and LO,] be Lagran-
gian subbundles of £. Then, after a preliminary reduction of the structure group
of £ to Un), LO.] yield further reductions to O(n), and we may consider cor-
responding orthogonal connections 0 . The Maslov class u( &, Ly. L YEH (1 R)
is the cohomology class of the l—form (\/——‘/TT) (0’ 0:“ ), wherc the compo-
nents of the connections are with respect to unitary trame& and we agree to use
the Einstein sum convention [5, 11].

Particularly . a phase space T*M has the symplectic form £ = dJd\. where A
is the Liouville 1-form, and the vertical foliation ¥~ by the fibers is Lagrangian.
Then if L is a Lagrangian submanifold of T*M, u(TT*M, ¥ /L. TL)is denoted
by u, and called the Maslov class of L. It is the same as the class originally defi-
ned by Maslov in quantum physics. (In order to achieve this we added a factor
— 2 to the class considered in [11]).

In [11]a representative form of K, is given as follows. Put

(1.1) TT*M = Z o ¥

where % is the horizontal distribution of the Riemannian connection D of g
Notice that 2 =7 ' (TM). and ¥ =~ n~ ' (I'*M) where 7: T*M — M is the pro-
jection, and the second isomorphism is $2-duality. This allows to lift g to a Rie-
mannian metric y = n*g © w*¢* of T*M, and to define the y-metric connection
V=n 4D)s s 1 (D% (g* D*are g D on T*M). On the other hand. J/ Z =
— (Q-duality) o (v-duality), J> = — [d yields an almost complex structure on
T*M which is both g and Q-compatible and satisfies VJ = 0. Hence Vis a unigary
connection, and it turns out that the Chern-Simons transgression form T(V)c*]
restricted to unitary bases tangent to L (e.g.. [11]) «lives» on L and it defines
exactly (1/2);;144

We send the reader to {l11] for more details and local coordinate expressions
of this construction. Particularly, if te. Jc’i) are unitary bases along L such that
e ETL (i=1..... n). and therefore Jel. are y-normal to L, V has local equa-
tions of the form

(1.2) Ve, = Ne, + blitJe)). Ve = — ble, + NiJe)).

where ()\/ (b’) are matrices of 1-forms which are antisymmetric and symmetric

respectively. If / = (¢ vV — Je Y V2. (1.2 },1vc5Vf = ()\7 4+ — b’)f

hence T(V) ¢ =— (l/’w)b’ and we get the following representative 1-form of
py L11]
(1.3) m, = ‘(l/n)bf

To go on we need the Riemannian connection V of y on T#M, and we look
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for it under the form

(1.4) VY=U7Y+Sx 1)

If we write down the conditions that V is y-metric and torsionless, and use
the classical cyclic permutation trick of Riemannian geometry we see that S
is determined by the formula

(1.5) 2YSX, VN.2)=TX, Y, 2) - T, Z x) - TZ X, Y),
where T(X, Y, Z) = v(X, T(Y, Z)), and T(Y, Z) is the torsion of V.
Remark. Formula (1.5) holds for any Riemannian manifold.

The torsion T was computed in [11] and an easy comparison shows that
(1.6) TX, Y, 2)=KZ Y, JX),
where r is a 3-covariant tensor defined on T*M by
1.7 r(X, Y, Z) = — X (horizontal lift of R(m, X, w.Y) (m:2)),

and R is the Riemannian curvature tensor of (M, g).

THEOREM 1.1. The Maslov class u, is the cohomology class of the form

n
(1.8) m, (X) = — ((H, )2) (X) —
T

1 n
- - I,

r (X, e.e)—r JX, €, Jel.)),

where H, is the mean curvature vector of L in (T*M, v), X is tangent to L and
{ el.) is an arbitrary v orthonormal basis of TL.

Proof. Since Je, is a normal basis of L a known formula of Riemannian geome-
try yields

(1.9) nH, = Z;'J.:] 7(Vel_ e, Je].)Jej,
and if we use (1.2), (1.4), and &} = b! (1.9) becomes

(1.10) nH, =0 (/e de) + (S, ¢).Je)) e,

Here, we shall replace @ei e = @ej e; + [e, e].] + T(el.. e/,), and use (1.5) and
(1.6). We get
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nH, =3"

i1 b;(el.).le]. —Zl (e e e~ riJe, e, Je))Je,.

Now, since (ei, Jei) is a symplectic basis, it is easy to check that this last result
is equivalent to (1.8). Q.e.d. -

If M = R", r = 0, and (1.8) reduces 'to Morvan’s formula [9] The same holds
if (M, g) is locally flat [11].

If (M, g) is of an arbitrary constant sectional curvature k, then R(u, v)w =
= ki{g(v, wu — g(u, wv} (u, v. w € TM), and (1.8) becomes

n k
(1.1 m, X)=— (i(H, 82 (X) + — Z‘;’: (&7 ye;. W*ei))\(X) -
i T

—8(mye; Myde,) NJX) — g(m, X, mee,)Ne,) +
+g(mJ X, my Je) Ne,)).

Then, if we decompose into horizontal and vertical components

(1.12) X="x+vx e, ="e +%e

and use J(X) = ¥" . we obtain:

1
(1.13) m,(X)=— (((H,) Q)X -
s

k
— = 7 ("X, e) — v X, e )l Ne,) +
T

+ (e, Pe N (X) + Q(le,. Ve, ) NIX)).

For instance, if L is the conormal bundle v*N of a totally geodesic submanifold
N of (M, g), it follows from our computations in [12} that, on one hand m;, =0
and, on the other hand, TL has bases which consist of p = dim N horizontal
vectors and of n — p vertical vectors. This implies Q(h €. ”el.) = 0 and, since
A = 0 along a conormal bundle, formula (1.13) yields

PROPOSITION 1.2. The conormal bundle v*N of a totally geodesic submanifold
N of any space form M is a minimal Lagrangian submanifold of (T*M, v) L]

(If M is flat it suffices to ask only minimality of Nin M [12]).

A Lagrangian submanifold L of 7T*M is called optical [1] if it is a submani-
fold of a hypersurface W transversal to the fibers, and which intersects the latter
along convex hypersurfaces. Here, we shall assume the stronger than transver-
sality condition that TW does not contain the Euler vector field E defined by
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i(E) = A\. In this case we call W a regular hypersurface, and if ¢ is the inclu-
sion of W in T*M n = (*\ is a contact form on W Indeed, it is easy to check
using a basis of TW that

n A (dnY = = (1/n) * [i (E) @\ ] #0.

Let C € TW be defined by
(1.14) iO)dn)=0, v(C O)=1.

Then 7n(C) # 0, and we may orient C such as n(C) > 0. Moreover (1.14) implies
that V Z € TW we have v(JC, Z) = Q(C, Z) = (i(C)dn) (Z) = 0 i.e., JCis a unit
normal vector field of W, hence it is not a horizontal vector, and C is not vertical.
Accordingly, if C' is the orthogonal projection of JC onto ¥ then n = v(’,
v=|C ||“], is the unit normal vector of W =W N ¥, in ( ¥, 7) (x EM).
Since it also follows from [11] that V is the Riemannian connection of ( Yo
the second fundamental form of W_ in “Vx is

oX, V) =4V, Y.y =vC VYY) (X, YETW).

Here, we can express Y by (1.4), and the presence of S will result in the presen-
ce of terms in r which vanish because X, Y € ¥". The result is

(1.15) o(X, V) =vQC, VXY) = py(JC, VXY) = vaw(X, ),

where o, in the second fundamental form of W in (T*M, v). Hence, we have

PROPOSITION 1.3. The hypersurface W is convex along the fibers of T*M iff
¥ N TW is contained in the positive subspace of the second fundamental form
of Win(T*M, v). =

Along the hypersurface W it is also important to consider the distribution
2 which is orthogonal to C, and, therefore it is Q-orthogonal to the symplectic
plane (C, JO). It follows that (2, §/#) is a symplectic vector bundle on W.

Now, let L C W be a Lagrangian submanifold of T*M. The maximal Q-so-
tropy of L implies that C € TL, and that . = TL N 2 is a Lagrangian subbundle
of (2, /3 ). Hence, in the computation of the Maslov class of L we may use
local unijtary bases (e, C Je_, JC), wherea =1,...,n—1,and e, € £. With
respect to these bases equations (1.2) become of the form

V ] = 5
(1.16) Yea =pbe, +x,C+ c‘i(Jea) +71,JC), V(Je ) =NNe,

— -1 . _ -~ -
VC=—3""1k e +2i-17.(Je )+9(JC), VIJC)=JVC,

where yg = —p,g and cg = cg. (Notice that vCJ. Csince y(C, C) = 1).
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Hence by (1.3) the Maslov class of L is represented by

1 1
(1.17) m, =—— ct—— 0.
. o
i T

Now. we shall notice that since C is not vertical the orthogonal projection
of TW ™ ¥ onto 2 is a Lagrangian subbundle ff of (2. 8/, )such that a
Maslov class u( 2. f . &y exists in H' (L, IR). From (1.16) we see that Vj
= yﬁ f and Vf (u +vV—1 C’3)f . where f = (e, \/—Je )V 2.are
£ and 3’ — orthogonal connections, respectlvely Tlus shows that u( 2. i/]
L) is represented precisely by the 1-form m(af FLy=—U/m cs I~mally
the form 6 of (1.17). which by (1.16) is 8(X) = 7(V C JOYy(Xx € TL) can be
computed with (1.4), (1.5). (1.6) and (1.15). The result is

PROPOSITION | 4. For a Lagrangian submanifold L contained in a regular hyper-
surface W of T*M, the Maslov class My s represented by the I-form

1
m (Xy=m(&L . LrX)——o (C, Xy -
7

1
- (H(CJCIX)+rX, C CY+rX JC JON,

iy

where notation was described previously. =

2. LEGENDRIAN SUBMANIFOLDS OF COTANGENT SPHERE BUNDLES

For the same manifold M as in Section 1, the cotangent sphere bundle is

(2.1) S*M ={pET*M [ g*(p.p)=11i.

and it is a regular hypersurface in the sense of Section 1. Indeed, since the Rie-
mannian connection is length preserving its horizontal space & along S*M is
tangent to S*M, and the latter must be transversal to the vertical distribution
¥, Accordingly the normal vector of S*M is in ¥ . and it is normal to
S*M N ¥ . Using natural local coordinates we see that this normal vector is
exactly the Euler vector £, which proves our assertion.

Furthermore. it follows that C of Section 1 will be JE. and it is related to
the contact form 7n induced by X in $*M by the relation

(2.2 Y(JE, X) = QE, X) = NX) = n(X),

therefore the distribution & of Section 1 is precisely the contact distribution
= 0. Accordingly. by definition. a Legendrian submanifold of S*M (or T*M)
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is an (n — 1)-dimensional submanifold A such that TA are Lagrangian subspaces
of this contact distribution. The Lagrangian distribution & o encountered in
the end of Section 1 is now exactly 7S*M N ¥, and the Maslov class of A is
defined as p, = (2, 30, TA).

As int the end of Section 1 (see also more details in [11]), we shall obtain
a representative 1-form of u A from the connection ﬁ, by putting its local equa-
tions under the form (1.16), where e_ € TA,and Cis to be replaced by JE (this
also implies 6 = — y(V(JE), E) = Q(E, VE) = 0 because V preserves the vertical
space which is Lagrangian). Hence the representative form of u A is {11]

(2.3) m, =—— c%.

Like in the lLagrangian case, in order to transform (2.3) into a Riemannian
expression we shall compute the mean curvature vector H A of A in S*M. With
the notation of formulas (1.16) the normal space of A in S*M has the basis
(Jea, JE). Hence we shall have
(2.4) (n—DH =321 ¥V, e, Je)(Je)+

+Z021 (Ve e, . JE)Y JE),

where V' is the Riemannian connection of (S*M, v). Furthermore, from (1.16)
and (1.4) we get

(2.5) Ve, € =Ve, €, +7,E+S(, e)—7(S, e,) E)E

and, therefore

— -1
(2.6) (n—DH, =271 che) ey +
+2h L v(Ste,. ). Je) Je) + 2071k (e,) UE) +

+ 2021 ¥(Ste,. e ), JE) (JE).

In this formula the terms containing S will be calculated by (1.5) and (1.6),
and on the other hand we shall use

] - Ly _
c le )=cgle )= 'y(veaeﬁ, Je ) =
=1V, ¢, +le,. €1+ T(e,. ). Je,) =
=% (e,) +v(Te,. €,), Je,).
The final result is

= -1
2.7 (n—DH, =207, cile) Je) —Z0 _ rleg e, e)Je)+

-1 -1
+ I K, (e VUE)+ 201 r(ley e, Je ) Je) +
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+ 2" rJE e . Je ) (JE).
Now, since (e,. JE, Jea, — L) is a symplectic basis §2 has the canonical form
with respect to this basis. and we get from (2.3)and (2.7).
THEOREM 2.1. The Maslov class of a Legendrian submanifold A of a cotangent
sphere bundle S*M is represented by the 1-form

n-—1
7 _
(2.8) mA(X)—

(i (H ) dn) (X) -

T
1
— =z b irXe e ) —r(JX e Je ).
T o= a o o a

where X € TA, n is the contact form of S*M, and HA is the mean curvature
vector of Ain (S*M, ). =

The representative 1-form of the Maslov class of A given by (2.8) has obviously
a Riemannian character in (S*M, ).

3. GENERALIZATION OF THE MEAN CURVATURE VECTOR FORMULAS

In this section we extend formulas (1.8) and (2.8) such as to compute the
mean curvature vector of a Lagrangian submanifold of an almost Hermitian
manifold and of a Legendrian submanifold of an almost contact metric mani-
fold M. Of course, in this cases Lagrangian (Legendrian) means that the tangent
bundle of the submanifold is a Lagrangian (Legendrian) subbundle with respect
to the structure defined by the fundamental 2-form of the almost Hermitian
(contact) structure. In the almost Hermitian case we reobtain a formula of Fo-
menko-Le Hong Van [7] and Le Hong Van [8], and we have a geometric in-
terpretation of the 1-form defined by those authors.

Let (N7, g J) be an almost Hermitian manifold. and Q(X, Y) = g(JX, Y)
be its fundamental (Kdhler) 2-form. Let L be a Lagrangian submanifold on V.
In view of the explanations given in Section 1, it is natural to define the Maslov
form of L as

3.1 m, =27(V/Le,

where ¢, is the first Chern polynomial in diemnsion #, @ is the Hermitian con-
nection of N (e.g., [6], Section 1X.10), and T denotes the Chem-Simons trans-
gression. In (3.1) the notation \7/1, means that V is restricted to the bundie of
unitary frames (e,, Je,.) Gg=1..... n) of TN where e, € TL. This ensures that
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m, liAves on L, but it may not be closed since, by [4], dmL =c, (Curvature @)
and V is a unitary but, perhaps, not an orthogonal connection on the bundle
mentioned above. (Notice also that V of Section 1 is not the Hermitian con-
nection of (T*M, J, v), but we have no analogue of that V for a general almost
Hermitian manifold).

Now, if we see (1.2) as being the local equations of the Hermitian connection
Y?/L, where e, are tangent to the submanifold L, (1.3) becomes the expression
of the presently defined Maslov form (3.1) of L. Furthermore, we may use
the formulas (1.4) and (1.5) in order to compute the Riemannian connection
V of g, and then compute like in the proof of Theorem 1.1. This will yield the
formula:

(3.2) nHL = 2?,/‘:1 b;(el.) (Je].) +

+ E?,/:] {T(Je, e, ef) + T(e, €, Jel.)} (Je/.),

and, therefore, for every X € TL, we shall have

PROPOSITION 3.1. The mean curvature vector H L of a Lagrangian submanifold
L of an almost Hermitian manifold (N, J, g) is determined by the formula

(3.3) n(i (H,) Q) (X)=mm, (X) +

+Z0 {T(ei,Jet., X) + T(Jel., e, Xl

(Notice that we made use of the following property of the Hermitian con-
nection: 7(Y, JZ) = T(JY, Z)) ([6], Proposition 1X.10.2)). ]

Expressing the Nijenhuls tensor of J by the torsion of V ([6], Proposition
1X.3.6) we see that J is integrable iff

(3.4) TUX,JY) — J(TUJX, YY) —JTXJIY)) — T(X, Y) =0,

and for the Hermitian connection this condition actuaily means

(3.5) TUX,JY)=JT(X,JY) o T(Z JX JY)=—TWJZ X,JY).

Accordingly, in the Hermitian case (3.3) becomes just nicely

(3.6) ni(HL)Q=7rmL.
This is precisely the result of [7], with the supplementary information about
the geometric nature of their ad hoc defined 1-form. Formula (3.3) is equivalent
with the result obtained in a different manner in [8].
Similar formulas can be developed for Legendrian submanifolds of almost
contact metric (a.c.m.) manifolds. Let (N2"*1! 4 £ n, g) be an almost contact
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metric manifold. where ¢ is the (1. 1)-tensor. £ is the vector field. n is the 1-form,
and g is the metric of the a.c.m. structure (¢.g.. [2]). Then it has a fundamental
2-form ®(X, Y) = g(pX, Y) which is nondegenerate on the vector bundie imy,
and, hence, it makes the latter into a symplectic vector bundle % . If there exists
a submanifold A of N such that TA is a Lagrangian subbundle of % then A will
be called a Legendrian submanifold of N R

An a.c.m. manifold has an important connection V’ which may be defined
as follows. Consider the well known almest Hermitian structure on N x IR defined
by the tensors

(3.7) J

d ) ( d )
A”rﬁa —_— = /‘7- Ti‘ h X) 1,
- ((50 at) s n(X) —

d d
Y (X@a —, Yob —):g(X, Y) + ab.
dt dt
T{len, define V to be the Hermitian connection of NV x IR, and vto be induced
by Vin N x (0) = N. Then V(V’) induces a unitary connection Vin (€. ¢. g).
and we shall define the Maslov form of the Legendrian submanifold A on .V by
means of the transgression form

(3.8) m, =2T(V/a)e,.

In order to compute this form. we shall represent the Hermitian connection
of N x R by equations of the form (1.16), where C is to be replaced by ¢ and
JC by d/dt. and where e, € TA. If we also replace the Greek indices by Latin
indices since they have to run from 1 to n, we get like for (2.3)

(3.9) m. =——cl.

Furthermore, we may compute again like for the proof of the formulas (2.7).
(2.8), and thereby obtain for the mean curvature vector HA the result

(3.10) nHA = er",j: 1 Ci.(e].) (Je/.) + Z;’: Ki(el.)é +

1
+ 3 [TUe. e, e)+ T, e, Je) (Je) + =1 Tle, e, £)E.

Now, if X is a tangent vector field of A, we get

PROPOSITION 3.2. The mean curvature vector HA of a Legendrian submanifold
A of the a.c.m. manifold N is determined by the formulas

(3.11) nti (H )®) (X)=mm, (X) -~ = (T(ge, e, X) + T(e,, pe, X)),



THE MASLOV CLASS IN A RIEMANNIAN PHASE SPACE 393

(3.12) nm(H ) =3 ke)+E" T, e &)=

i=1 i=1
= - Eln___ 1 g(e"’ [el’ E])'

“The last equality follows using the formulas (1.16) of the present case. Let
us also remember that if J of (3.7) is integrable the a.c.m. structure is said to be
normal, and then, just like for (3.6), we get

(3.13) n(i(HA)<I>)=7rmA.

Let us recall again the basic formula [4)

(3.14) d(T(Vyc,) = c, (),

where € is the curvature of V and T(‘A7)c] is a form on the total space of the
corresponding bundle of unitary frames. In view of the formulas established
earlier in this Section (3.14) indicates a relation between the minimality pro-
perty of Lagrangian (Legendrian) submanifolds and the first Chemn class. Namely
we have

PROPOSITION 3.3. Let L be a minimal Lagrangian submanifold of a Hermitian
manifold M. Then the first Chern class ¢ (M) vanishes on L. Similarly, if Ais
a minimal Legendrian submanifold of a normal almost contact manifold, then
c,(€¢ ) vanishes on A.

Proof. The first part of this Proposition was established directly in {3] and
[8]. It follows from (3.6), and the transgression interpretation of m, by restric-
ting (3.14) to L. The second part follows in the same way from (3.13) .

REMARK. The results of Proposition 3.3 remain valid for the almost Hermitian
and contact case if T vanishes along the submanifolds L and A respectively.

Relations between the first Chern class and stability of minimal Lagrangian
submanifold were established straightforwardly in [8] and [10] by a study of the
second variation of the volume. For instance, if the first Chern class of a Hermi-
tian manifold is negative its minimal Lagrangian submanifoids are stable [8].
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